갤러리 이슈박스, 최근방문 갤러리
연관 갤러리
생산직 갤러리 타 갤러리(0)
이 갤러리가 연관 갤러리로 추가한 갤러리
추가한 갤러리가 없습니다.
0/0
타 갤러리 생산직 갤러리(0)
이 갤러리를 연관 갤러리로 추가한 갤러리
0/0
개념글 리스트
1/3
- 싱글벙글 서바이벌 예능에서 현타 온 참가자 최강한화이글스
- 찐득하게 보정 해봤어요! 스앟
- 절도의 민족 Jap.... 밭 단위로 서리하는 시골 민도 개똥본
- 나거한 중소기업갤 명절 선물 뉴스 ㅋㅋ 조선인의안락사
- 싱글벙글 꼴깝촌 카시벨로
- 2박 3일 요나고 여행기 쌍떡잎
- 싱글벙글 일본인 아내와 결혼하게 된 계기.manwha ㅇㅇ
- 현타온 캣맘 ㅇㅇ
- 피와 내장까지 사랑해.manwha 김전돋
- 싱글벙글 명절선물을 받는 촌 썅년
- 러브러브 욕을 하면 안되는 이유.manhwa comma
- 지금까지 찍은 사진들! 뮤엘시스
- 한의사는 응급실 근무 못하는 이유.araboja 의갤러
- 추석 연휴 시작한 어제와 오늘 발생한 안타까운 사고들 ㅇㅇ
- [단독] 쯔양, 협박 사건 이후 첫 근황...악플러 20명 고발 고맙슘봐
싱글벙글 제논의 역설
먼 고대 그리스, 제논이라는 백수 건달이 살고있었다.제논 : ㅎㅇ시민 : ?제논 : 님 어제 올림픽 달리기 시합봄?시민 : 아 그거 개쩔었죠 ㅎㅎ 근데 왜요?제논 : 그거 사실 님 눈의 착각임 ㅋ 아무도 결승선에 못도달함시민 : ? 뭐래 시발제논 : 아 님아 들어보셈. 달리기 선수가 결승선에 도달하려면일단 출발선과 결승선의 1/2 지점에 도착해야겠죠?시민 : ㅇㅇ..제논 : 그러면 다시 거기에서 결승선까지의 1/2 지점까지도달 해야겠죠? 도달했으면 다시 또 1/2 지점까지 도달해야되겠죠? 또 다시 결승선까지 1/2... 또 1/2... 하면결국 무한히 가까워지기만 할뿐 도달하진 못하는거 아닙니까.이렇게 말입니다. 그러면 아무리 무한한 시간이 흘러달리고 달린다해도 결승선에는 도달 못하겠죠?제논 : 결국 결승선엔 죽었다 깨어나도 못도달함 ㅋㅋ님이 어제 잘못본거임 PPAP~ ㅋㅋㅋㅋㅋ시민 : 아 뭐래 시발 꺼져제논 : 에베베베베~ 반박해봐! 못하쥬 ㅋㅋㅋㅋㅋㅋㅋ꼬우면 반박 해보시던가 줫밥새끼야 ㅋㅋㅋㅋㅋ시민 : (ㅂㄷㅂㄷ....)이 제논의 역설은 직관적으로는 반론이 되지만 논리적으로는 반론이 불가능했다.결국 제논은 시민들을 궤변으로 현혹시킨다는 이유로 사형당한다.거두절미하고 왜 그당시에는 제논의 역설을 해결하지 못했는가?답은 '유한을 무한번 더하면 유한이 되는가?' 에 대한 대답을 하지 못했기 때문이다.그리스 시대에 길이는 무조건 유한한 것으로 취급되었다. 점 역시 길이로 취급되었다.위의 나온 제논의 역설을 수식으로 정리하면 1/2 + 1/4 + 1/8 + 1/16............ = ? 이다.위의 식을 현대수학으로 계산하면 1 이고 이는 그당시에도 직관적으로는 파악하고 있던 사실이였다.하지만 유한한 수를 무한번 더하면 무한이 나와야 한다는것 역시 당시의 상식이였다.두 상식의 충돌을 해결하지 못한채 시간이 흘러 흘러 2천년뒤무한급수라는 개념을 도입해 이를 설명하려 시도한다.뉴턴 :증명 끝 ㅎㅎ시민 : ? 저 문관데요;;뉴턴 : 에효 문돌이 ㅉㅉ 알기쉽게 그림으로 설명해줄게짜잔. 종이의 반, 그 반의 반, 그 반의 반의 반..... 이렇게 무수히 더하면 종이 한장이 되지? 자 어때 깔끔하지?시민 : 음... 알거같긴한데 정확히 왜 저러는거에요?뉴턴 : 그야 한없이 작은수를 끊임없이 더하니 결국 유한이 되는거지 ㅉㅉ 문돌이 수준수학자 : 님 작은수를 한없이 더하면 어떤수에 그냥 계속 가까워지는거 아니에요?1/2 = 1/21/2 + 1/4 = 3/41/2 + 1/4 + 1/8 = 7/8.....................이렇게 한없이 1에 가까워지는거지 결코 1은 되지 않는거 아닙니까?뉴턴 : 뭐래, 위에 종이 안보이냐 병신아?수학자 : 아니 님 종이 뒤질때까지 계속 오려서 함 붙여보세요. 한없이 가까워질 망정 종이 한장은 결코 완성못하는게 당연한 거 아니에요? 우주가 끝날때까지 계속 붙여도 조그마한 조각정도는 하나 남을것 아닙니까?뉴턴 : 말 존나 많네 느금마수학자 : ????그후 200년이 더흘러 칸토어에 의해서 완전히 해결된다.칸토어 : 애초에 제논이 세운 전제 자체가 잘못됬음. 우리가 셀 수있는 수의 체계와 셀 수없는 수의 체계를 분리해서 봐야함.길이는 셀 수없는 수에 속하니 길이를 셀 수 있는 수로 취급한 전제부터가 잘못됨수학자 : 뭔소리야 ㅅㅂ 한국말해라칸토어 : 자 쉽게 설명해줄게이 그림에서 1,2,3.....에 해당하는 숫자 점이 많아아니면 그냥 수직선위에 찍혀있는 점의 개수가 많아?수학자 : 당연히 수직선 위에 찍혀있는 점의 개수지. 수없이 많으니까...칸토어 : 아 그래? 그러면 이 수직선의 길이가 무한할때 전체적으로 보면 어느게 더 많을까?수학자: 음..... 둘다 무한개지만 그냥 찍혀있는 점의 개수가 더 많을 것 같긴한데...... 칸토어 : 예아~ 니 말이 맞다 이기. 그리고 내가 그거 수학적으로 엄밀히 “증명”함결국 '무한은 다같은 무한이 아니라 무한 사이에도 서열이 있다.'이 소리야.수학자 : 헐 진짜? 대박쩌러멍미부랄떨려칸토어 : ㅇㅇ 이를 바로 제논의 역설에 적용할 수 있음달리기 선수가 달려가는 길이인 '선분'은 '점'이 무한개 모인거지?근데 선분은 아무리 쪼개도 쪼개도 계속 무한임.왜냐하면 선분에 포함되어있는 점의 수는 자연수의 개수보다더 서열이 높은 무한이거든. 둘이 아예 다른 종류인거야.수학자 : ㅇㅎ. 그럼 선분에 있는 점을 우리가 하나,둘,셋.... 이렇게 세는것 자체가 불가능하다는거네?시민 : 아하! 너무 많아서 세는것 자체가 의미가 없다는 소리군요?칸토어 : 땡! '아예 셀 수가 없어' 점들은 애시당초 셀 수있는 개념이 아니라니까?님 흐르는 물에 물방울이 몇개인지 셀 수 있음?애초에 선분이란건 자연수랑 아예 개념이 다른거야. 둘다 무한이지만 종류가 다른 무한이야.수학자 : 그렇다면 제논의 역설은....칸토어 : ㅇㅇ 셀 수 없는 선분 자체를 셀 수 있는것 처럼 취급하니 이런 사단이 일어난거야.애시당초 전제부터 틀렸음! 제논의 역설은 시작부터 잘못됨. “논.파.완.료”시민 : 별로 와닿지가 않는데요.수학자 : 수학이란 원래 그렇습니당 ㅎㅎ이렇게 2500년의 세월이 흘러 제논의 역설은 논파된다.
작성자 : kangaroo2529고정닉
차단하기
설정을 통해 게시물을 걸러서 볼 수 있습니다.
댓글 영역
획득법
① NFT 발행
작성한 게시물을 NFT로 발행하면 일주일 동안 사용할 수 있습니다. (최초 1회)
② NFT 구매
다른 이용자의 NFT를 구매하면 한 달 동안 사용할 수 있습니다. (구매 시마다 갱신)
사용법
디시콘에서지갑연결시 바로 사용 가능합니다.